隨著單細(xì)胞組學(xué)研究的飛速發(fā)展,組織提核技術(shù)逐漸成為單細(xì)胞研究中的必要手段。單核測(cè)序相較單細(xì)胞測(cè)序有著諸多優(yōu)勢(shì):簡(jiǎn)單快捷的實(shí)驗(yàn)步驟,更少細(xì)胞解離引起的類型偏好,解除細(xì)胞大小對(duì)微流控捕獲效率的偏好,減少解離時(shí)應(yīng)激基因誘導(dǎo)的轉(zhuǎn)錄假象,使細(xì)胞直徑過(guò)大、細(xì)胞形狀不規(guī)則、凍存組織做單細(xì)胞研究成為可能。目前神經(jīng)細(xì)胞[1-3]、心臟[4]、腎臟[5-6]、肝臟[7-8]、脂肪[9-10]等的單細(xì)胞研究均可選用細(xì)胞核進(jìn)行實(shí)驗(yàn)。
然而提核技術(shù)也存在一定問(wèn)題,比如提核后的細(xì)胞核狀態(tài)不好、細(xì)胞核的得率較低、細(xì)胞核易粘連、碎片和雜質(zhì)過(guò)多且難以去除等。
為提高科研服務(wù)水平,優(yōu)化提核技術(shù),助力單細(xì)胞研究,博奧晶典研究人員經(jīng)過(guò)不斷鉆研,攻克技術(shù)難關(guān),成功研發(fā)出【動(dòng)物組織細(xì)胞核分離試劑盒】。目前此款試劑盒已成功測(cè)試新鮮組織、凍存組織的多種組織類型,包括小鼠腦、人腦、小鼠心臟、小鼠腎臟、小鼠肝臟、人腦、人卵巢、人肺、豬心臟、肝臟、脂肪等等,數(shù)據(jù)結(jié)果表現(xiàn)優(yōu)秀。
圖1 博奧晶典自研組織細(xì)胞核分離試劑盒
檢驗(yàn)原理
該試劑盒通過(guò)利用表面活性劑破壞組織細(xì)胞的膜和蛋白質(zhì)結(jié)構(gòu),釋放細(xì)胞核,使之處于游離狀態(tài),然后通過(guò)密度梯度離心純化細(xì)胞核。得到的純凈細(xì)胞核可適用于單細(xì)胞核轉(zhuǎn)錄組、單細(xì)胞 ATAC-seq 和單細(xì)胞多組學(xué)等實(shí)驗(yàn)。
主要組成成分
表1:博奧晶典自研組織細(xì)胞核分離試劑盒主要組成成分表
部分測(cè)試數(shù)據(jù)展示
圖2 人卵巢 OCT 包埋組織(左上)、豬心臟(右上)、人腦(左下)、小鼠腎臟(右下)提核結(jié)果
圖3 小鼠腦提核數(shù)據(jù)展示(細(xì)胞活率0.12%、結(jié)團(tuán)率5.86%)
圖4 小鼠腦提核樣本的3’單細(xì)胞轉(zhuǎn)錄組小測(cè)結(jié)果(細(xì)胞數(shù)7746,基因中位數(shù)1582)
經(jīng)過(guò)以上數(shù)據(jù)展示,可以發(fā)現(xiàn)博奧晶典自主研發(fā)的核分離試劑盒在各類新鮮組織、凍存組織提核的實(shí)驗(yàn)中表現(xiàn)很好。尤其是從小鼠腦單細(xì)胞核轉(zhuǎn)錄組的實(shí)際小測(cè)數(shù)據(jù)和分析結(jié)果來(lái)看,在測(cè)序飽和度不高的前提下,捕獲細(xì)胞數(shù)、基因中位數(shù)、Fraction Reads in Cell 等重要指標(biāo)非常良好。此外細(xì)胞分群效果良好,星形膠質(zhì)細(xì)胞、少突膠質(zhì)細(xì)胞、小神經(jīng)膠質(zhì)細(xì)胞、興奮性神經(jīng)元、抑制性神經(jīng)元等關(guān)鍵細(xì)胞類型均得到了很好的鑒定,各細(xì)胞類型的數(shù)量和比例符合理論值。
經(jīng)過(guò)上述介紹,相信您對(duì)這款試劑盒已經(jīng)有了一些了解,博奧晶典始終以更高標(biāo)準(zhǔn)的服務(wù)、追求卓越的態(tài)度提供科研服務(wù),希望博奧晶典自研【動(dòng)物組織細(xì)胞核分離試劑盒】可以助您更好的開(kāi)展單細(xì)胞組學(xué)實(shí)驗(yàn),為您提供更加準(zhǔn)確的單細(xì)胞組學(xué)方案。
參考文獻(xiàn):
[1] Del-Aguila JL, Li Z, Dube U, Mihindukulasuriya KA, Budde JP, Fernandez MV, Ibanez L, Bradley J, Wang F, Bergmann K, Davenport R, Morris JC, Holtzman DM, Perrin RJ, Benitez BA, Dougherty J, Cruchaga C, Harari O. A single-nuclei RNA sequencing study of mendelian and sporadic AD in the human brain. Alzheimers Res Ther. 2019 Aug 9; 11(1): 71.
[2] Srinivasan K, Friedman BA, Etxeberria A, Huntley MA, van der Brug MP, Foreman O, Paw JS, Modrusan Z, Beach TG, Serrano GE, Hansen DV. Alzheimer's patient microglia exhibit enhanced aging and unique transcriptional activation. Cell Rep. 2020 Jun 30; 31(13): 107843.
[3] M?rtin A, Calvigioni D, Tzortzi O, Fuzik J, W?rnberg E, Meletis K. A spatiomolecular map of the striatum. Cell Rep. 2019 Dec 24; 29(13): 4320-4333. e5.
[4] Vidal R, Wagner JUG, Braeuning C, Fischer C, Patrick R, Tombor L, Muhly-Reinholz M, John D, Kliem M, Conrad T, Guimar?es-Camboa N, Harvey R, Dimmeler S, Sauer S. Transcriptional heterogeneity of fibroblasts is a hallmark of the aging heart. JCI Insight. 2019 Nov 14; 4(22): e131092.
[5] Lake BB, Chen S, Hoshi M, Plongthongkum N, Salamon D, Knoten A, Vijayan A, Venkatesh R, Kim EH, Gao D, Gaut J, Zhang K, Jain S. A single-nucleus RNA-sequencing pipeline to decipher the molecular anatomy and pathophysiology of human kidneys. Nat Commun. 2019 Jun 27; 10(1): 2832.
[6] O'Sullivan ED, Mylonas KJ, Hughes J, Ferenbach DA. Complementary roles for single-nucleus and single-cell RNA sequencing in kidney disease research. J Am Soc Nephrol. 2019 Apr; 30(4): 712-713.
[7] Nault R, Fader KA, Bhattacharya S, Zacharewski TR. Single-nuclei RNA sequencing assessment of the hepatic effects of 2,3,7,8-tetrachlorodibenzo-p-dioxin. Cell Mol Gastroenterol Hepatol. 2021; 11(1): 147-159.
[8] Rodrigues PM, Banales JM. Characterizing the heterogeneity of liver cell populations under a nASH-related hepatotoxicant using single-nuclei RNA sequencing. Cell Mol Gastroenterol Hepatol. 2021; 11(1): 294-296.
[9] Sárvári AK, Van Hauwaert EL, Markussen LK, Gammelmark E, Marcher AB, Ebbesen MF, Nielsen R, Brewer JR, Madsen JGS, Mandrup S. Plasticity of epididymal adipose tissue in response to diet-induced obesity at single-nucleus resolution. Cell Metab. 2021 Feb 2; 33(2): 437-453.e5.
[10] Sun W, Dong H, Balaz M, Slyper M, Drokhlyansky E, Colleluori G, Giordano A, Kovanicova Z, Stefanicka P, Balazova L, Ding L, Husted AS, Rudofsky G, Ukropec J, Cinti S, Schwartz TW, Regev A, Wolfrum C. snRNA-seq reveals a subpopulation of adipocytes that regulates thermogenesis. Nature. 2020 Nov; 587(7832): 98-102.